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a b s t r a c t

With the rapid development of deep learning methods, researchers have gradually shifted the
research focus from hand-crafted features to deep features in the field of the content-based image
retrieval (CBIR). A great deal of attention has been paid to aggregate the extracted features from the
convolutional layer in the deep convolutional neural network (CNN) into a global representation vector
for CBIR. In this paper, we propose a simple but effective method which called Strong-Response-Stack-
Contribution (SRSC) to generate the global representation vector for object retrieval. As we know,
for object retrieval, when using CNN to extract features, what we want is to extract features in the
region of interest (ROI). So we explored spatial and channel contribution to help us focus more on ROI
and make the global image representation vector more representative. The process of the approach
SRSC is to first generate spatial contribution according to the degree of channel response intensity.
Then, we generate channel contribution by joining the sparsity information and the element-value
information together. Finally, the global representation vector is generated according to spatial and
channel contribution to perform image retrieval. Experiments on Oxford and Paris buildings datasets
show the effectiveness of the proposed approach.

© 2019 Published by Elsevier B.V.

1. Introduction

In the Web2.0 era, especially with the popularity of social
networking sites such as Flickr and Facebook, young people are
increasingly inclined to take photos with their mobile phones
and share them online, which makes a huge amount of data on
the Internet. In order to retrieve these massive image data more
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effectively, the content-based image retrieval (CBIR) technology
has gradually become the main direction of image retrieval. The
basic process is to extract the features of the low level (color,
texture, etc.) from the image and then based on these features,
CBIR measures similarity between the query image and dataset
images, and finally getting the retrieval result.

However, there are several challenge problems in CBIR. One is
the ‘‘semantic gap’’ problem [1]. In order to narrow the gap, one
way is to design a good feature expression. In recent years,

CNNs have shown unprecedented advantages in image re-
trieval, target recognition and other fields. Researchers have cho-
sen deep features [2–4] instead of hand-crafted local features to
do image retrieval.

Object retrieval is an important part of CBIR. It consists on
identify an object contained in the query image from the image
database. The user is interested in the specific object in the image,
so the result retrieved should be the images containing the object.
For object retrieval, when using CNN to extract features, what we
want is to extract features in region of interest (ROI). Based on
such a way of thinking that, we propose a method to distinguish
the object from the background.
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In this paper, we propose a simple but effective method
which called Strong-Response-Stack-Contribution (SRSC) to gen-
erate the global image representation vector for image retrieval.
We explore two contributions that make us more focused on
ROI. Our approach is inspired by CroW [5]. CroW proposed two
weighting schemes, spatial and channel weight, which are very
exciting. At the same time, we think about whether these two
weighting schemes are optimal.

We design the spatial contribution based on following consid-
erations: first, we think there is no need to add all the channel
values to construct the spatial weight in CroW [5] because a lot
of redundancy and noise are added. Second, PWA [6] proposed a
channel selection strategy, which applies each selected channel
as a weight to the features, and finally obtained the global rep-
resentation vector with higher dimensions. We believe that the
channel selection strategy can be used to select the appropriate
channels instead of all channels. For channel contribution, we
join the sparsity information and the element-value information
together. In CroW, it only considers the sparsity information of
the feature maps to construct the channel weight. However, a
feature map is composed of real values, and cannot be considered
as a binarized matrix. The element-value on each spatial location
denotes the intensity information. So the channel weight strategy
in CroW is not make full use of information. So we propose a new
strategy to generate channel contribution using both information.
We have improved the two weighting strategies proposed in
CroW to make them work better.

The major contributions of this paper can be summarized as
follows:

(1) We use the channel selection strategy [6] to select the
strong response channels. Then we use the selected channels
to build weight maps to generate the spatial contribution for
assigning larger weights to the object location. It can help us
distinguish the object from the background.

(2) We design a new channel weighting strategy called chan-
nel contribution for alleviating visual burstiness [7]. It makes full
use of both sparsity and element-value information.

In the following sections, the related works are described in
Section 2; the description of our method is in Section 3, 4, and 5;
experiments, results and discussions are shown in Sections 6 and
7; Section 8 is the conclusion.

2. Related works

Content-based image retrieval task (CBIR) has long been an
important research topic in the field of computer vision. Since
the early 1990s, researchers have designed global features, local
features, and convolutional features to explore the CBIR task,
and achieving remarkable results. State-of-the-art methods are
mainly based on two types of features, one for hand-crafted fea-
tures and the other for deep convolutional features. The following
subsections describe the existing works related to the above two
aspects.

2.1. Methods based on hand-crafted features

In the field of image retrieval, a lot of research progress has
been made in the image feature representation. In the early
studies, the global features (color and texture) were used to
match the images. For object retrieval, the influence of the shoot-
ing environment, such as the variations of illumination, scale,
viewing angle and background, will have a greater impact on
the search results. Due to the large environmental interference,
for the same object image retrieval, when selecting features, it
is often preferred to select those invariant local features with
better anti-interference. So more detailed hand-crafted feature

descriptors emerge gradually. One of the most representative is
the classic scale-invariant feature transform (SIFT) [8–10] feature.
Then diverse variants were proposed based on the SIFT features,
such as PCA-SIFT [11], SURF [12], RootSIFT [13], etc. During the
period from 2003 to 2012, image retrieval methods are mainly
based on the SIFT features. Researchers mainly studied how to
obtain the global feature representation vectors with a better
representation ability by coding and aggregating local features.
The proposed SIFT feature makes the Bag of Words (BoW) [14,15]
model feasible. BoW method needs to generate a vocabulary
book. A large-scale vocabulary book may contain 1 million or
more visual vocabulary. So the approximation methods are cru-
cial in assigning data to a large number of clusters. There are two
representative works, they are Approximate k-means [16] and
Hierarchical k-means [17]. In Approximate k-means, K clustering
centers are indexed by random K–D trees [18]. Hierarchical k-
means uses the standard k-means method for feature training
in different levels. Because the size of the vocabulary book, the
BoW histogram dimension is quite large. It gives a considerable
computational complexity to the retrieval process, resulting in
low retrieval speed and high memory consumption [19]. In 2008,
Jégou et al. [20] proposed Hamming embedding, and medium
vocabulary book began to occupy a place in image retrieval. In
2010, Perronnin et al. and Jégou et al. [21,22] proposed Fisher
vectors (FV) [21] and Vector of Locally Aggregated Descriptors
(VLAD) [22,23], and then small vocabulary book enters the re-
searcher’s horizon. FV is to use GMM to model feature points.
GMM is actually a kind of clustering. It considers the distance
from feature points to each cluster center. FV uses a linear combi-
nation of all cluster centers to represent the feature points. VLAD
considers only the cluster center closest to the feature point,
while preserving the distance of each feature point to the nearest
cluster center. Besides these classic works, there are other meth-
ods to generate global representation vectors, like triangulation
embedding [24], and etc [25–28].

2.2. Methods based on deep convolutional features

Recently, researchers confirm that the semantic information
obtained by using CNN to extract image features is better than
hand-crafted features. Features extracted from the convolutional
layer or fully connected layer can be aggregated into global image
representation vectors for object retrieval. Cosine distance or
Euclidean distance are used to measure the similarity of images
to complete the work of object retrieval.

The feature of the fully-connected layer provides a description
of the high level of the image content, so early works [3,4,29] take
the output of the last fully-connected layer directly as the global
representation vector of the image. But some researchers [30,31]
point out that the selection of the upper level layer is actually
not conducive to the object retrieval, because of the features
extracted from the upper layer losing the spatial information
for the object. Then, more and more researches tend to use the
features of the convolutional layer for object retrieval. When
using the feature maps of the convolutional layer as the raw
features for image retrieval, one of the main problems is how to
convert the 3d tensor into a valid feature representation vector.
Researchers have proposed a variety of solutions for this problem,
like Sum-pooling, Average-pooling, Max-pooling and etc [5,32–
34]. Sum-pooling sums all the pixel values of each feature map.
So each feature map gets a real value, and the N feature maps get
a vector with a length of N. Average-pooling is the same as Sum-
pooling, except that the pixel values are summed and divided by
the size of the feature map. Max-pooling selects the maximum
pixel value of each feature map. In addition to direct feature
pooling, it is also useful to assign specific weights to feature maps
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Fig. 1. The framework of our proposed method.

before pooling. Babenko et al. [32] apply a Gaussian mask to
the feature maps before pooling. Kalantidis et al. [5] construct
spatial and channel weights to increase the weights of ROI to
a certain extent and reduce the weights of non-object regions.
Wang et al. [35] designed an adaptive Gaussian filter and chan-
nel vector to co-weight the feature maps. In addition, there are
some researches that perform regional analysis of convolutional
features. Tolias et al. [33] proposed R-MAC. This method uses a
specific region to perform max-pooling on the feature maps and
generate a series of region vectors. Then it generates the image
representation by using the Sum-pooling to aggregate the region
vectors. One disadvantage of this approach is that it uses a fixed-
position grid. In this regard, some methods have been improved
on the basis of R-MAC. Jimenez et al. [34] improve the R-MAC
using the (CAMs) approach. CAMs tries to combine the predic-
tion information of the network category to make the spatial
weight more discriminant. It generates a series of spatial maps
representing the importance of each part of the image, which is
related to the category information of the image. Similarly, Cao
et al. [36] propose to obtain a series of basic regions directly from
the convolutional layer and then use an adaptive rearrangement
method.

3. System overview

Our system framework is shown in Fig. 1. As we can see, the
whole work can be divided into two parts: offline and online. The
offline part contains 5 steps, and the online part contains 6 steps.

The procedure of the offline system is described as follows: (1)
Dataset features extraction. On the whole dataset, we extract the
features of each image on the convolutional layer. (2) Channel
response degree ranking. The extracted convolutional features
generally contain hundreds of channels. For each dataset, we
calculate the size of each channel’s response and rank them
in descending order. We select the top M channels. (3) Spatial
contribution exploring. We use the top M channels to generate
spatial contribution for each image. (4) Channel contribution
exploring. We join the sparsity information and the element
values information together to build the channel contribution

vector. (5) Generate the global representation vector of each
image on the whole dataset. We use the spatial contribution and
channel contribution to aggregate features into the global image
representation vector.

Online: (1) Query features extraction. We extract the features
of the query image on the convolutional layer. (2) Spatial contri-
bution exploring. We use the channel response degree informa-
tion obtained in the offline part to generate spatial contribution.
(3) Channel contribution exploring. (4) Generate the global rep-
resentation vector of the query image. (5) Query expansion. Use
simple query expansion to improve performance. (6) Similarity
comparison. Compare the query global representation vector with
datasets and get the results.

4. The proposed method on offline

In this section, we introduce the offline part of the system
framework in detail. In Section 4.1, we introduce features extrac-
tion and present channel response degree ranking in Section 4.2.
We present spatial contribution exploring in Section 4.3. Sec-
tion 4.4 presents channel contribution exploring and Section 4.5
presents global image representation generating. Algorithm is
given in Section 4.6.

4.1. Features extraction

In object retrieval, it is very important to find good features
extraction and representation. As shown in Fig. 1, we input an
image into CNN, and extract features on the convolutional layer.
Let X ∈ RN×W×H be the 3-dimensional feature tensor extracted
from the selected convolutional layer, where N is the number of
feature maps, H and W denote the height and width of the feature
maps respectively.

In this paper, we use pre-trained VGG16 model to extract
deep convolutional features. The network has 13 convolutional
layers, 5 max-pooling layers and 3 fully connected layers. In our
framework, we just extract deep features from the last pooling
layer (the pool5 layer), and the extracted feature X ∈ R512×W×H .
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Fig. 2. Original images and visualization of the top 3 strong response channel
values.

4.2. Channel response degree ranking

If a channel performs strong response on the whole dataset,
this channel may be more discriminative. Therefore, we calculate
the channel response on the entire dataset with J images. After
that, we sort them from large to small, then select the top M
(M < N) normalized channel values to build weight maps.

We denote the entry in image j’s feature X corresponding to
channel n at spatial location (x, y) as Xj(n, x, y). And we denote the
entry in image j’s h corresponding to channel n as h (j, n). In order
to calculate each channel’s response, we first use Sum-pooling to
aggregate the N × W × H dimensional deep features Xj of image
j (j = 1, 2, . . . , J), J is the total number of images in the dataset,
and then get the vectors h ∈ RJ×N as follows:

h (j, n) =

W∑
x=1

H∑
y=1

Xj (n, x, y) ∀nϵ [1, 2, . . . ,N] (1)

Then, we compute the average vector h ∈ RN of the h matrix as
follows:

h(n) =
1
J

J∑
j=1

h (j, n) (2)

Finally, we compute each channel’s response E ∈ RN as follows:

E(n) =
1
J

J∑
j=1

(h (j, n) − h(n))2 (3)

Let V = {v1, v2, . . . , vN} , V ∈ RN stores the corresponding
channel ID according to the size of the channel response E from
large to small.

Fig. 2 shows the visualization of the top 3 strong response
channel. We can see that each channel has a large response
area, which may correspond to a part of an object or object, and
obstructions such as trees and background are suppressed.

4.3. Spatial contribution exploring

we denote the entry in S at spatial location (x, y) as S (x, y).
And We denote the entry in corresponding to channel m
at spatial location (x, y) as (m, x, y). According to the vector
V ∈ RN , we select the top M channels values of feature maps
(M < N), and stack them into a weight maps ∈ RM×W×H . After
adding multiple weight maps, those regions with large response

are generally the areas where the objects are located. So we can
use them to generate the spatial contribution of feature maps.
The corresponding spatial contribution matrix S ∈ R(W×H) can
be derived as follows:

S(x, y) =

M∑
m=1

(m, x, y) (4)

The spatial contribution matrix S is then normalized and
power-transformed. The specific operation is as follows:

S ′
=

(
S√∑
S2

) 1
2

(5)

After doing this, we get final spatial contribution matrix S ′
∈

R(W×H). Therefore, based on the spatial contributionS′, we gen-
erate intermediate vector Φ ∈ RN for channel contribution ex-
ploring by aggregating the spatial contribution matrix as follows:

Φ(n) =

W∑
x=1

H∑
y=1

X (n, x, y) S ′(x, y) (6)

Fig. 3 shows the visualization of the final spatial contribution
and the top 15 strong response channel values. In Fig. 3, the
leftmost column is the original image, the rightmost column is
the visualized spatial contribution, and the middle part is the
visualized top 15 strong response channels. The role of the spatial
contribution is to assign larger weights to the features of the ROI.
As can be seen from the middle column, the selected channels are
the locations of the object or part of the object. We can add up
these channels to assemble the whole object. So we accumulate
these channels to get spatial contribution. As can be seen from the
spatial contribution, the values of the object location are larger,
and the values of the background such as trees and people are
smaller. Therefore, the spatial contribution can reflect the ROI.
Applying the spatial contribution as a weight to the image fea-
tures can effectively detect ROI. Compared to CroW method that
sums all channels’ values, our method is a spatial contribution
sensitive and which highlight objects from the whole redundant
channels.

4.4. Channel contribution exploring

Our channel contribution strategy extends CroW by joining
the sparsity information and the element-value information after
doing spatial contribution of feature maps. In CroW, it only con-
siders the sparsity of feature maps. It takes the number of non-
zero elements as the information but it ignores the information
contained in the specific values of feature maps.

Here, we propose a new method to generate channel con-
tribution, which is based on the sparsity information and the
element value information. We expect that similar images will
have similar occurrence rates for a given feature. We also expect
that similar images will have similar strong response for a given
feature. We compute the proportion of non-zero responses z(n)
and the element-value responseC(n) for each channel n, and then
compute the channel contribution C ∈ RN :

z(n) =

∑
xy 1[X(n, x, y) > 0]

W × H
(7)

C(n) =

(
Φ(n)

W × H

)2

(8)

C(n) = α × log(
N × ε +

∑
d z(d)

ε + z(n)
) + (1 − α)
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Fig. 3. Original images and visualization of final spatial contribution and the top 15 strong response channel.

Fig. 4. The correlation of sparsity (a) and element-value response (b) for the
query images of the Pari6K.

× log(
N × ε +

∑
d C(d)

ε + C(n)
) (9)

where ε is a small constant added for numerical stability. We
compute C(n) by summing the element value of each feature map
after doing spatial contribution. α is a hyperparameter, in our
experiments, we set α = 0.2. We will discuss the parameter α

in Section 7.2.
To explain why this channel contribution works, we visualize

the pair-wise correlation of the vectors of channel sparsity z and
element-value response C for all the query images of the Paris6K
dataset. It has 55 query images, and each 5 images corresponds
to a landmark of Paris. So all the query images can be classified
into 11 classes. We organize images by class. As we can see
from Fig. 4, both channel sparsity z and element-value response
C are highly correlated for images of the same landmark. But
element-value response C is less correlated for images of differ-
ent landmarks. Therefore, compared with CroW [5] using sparsity
information alone, we combine the sparsity and the element-
value response information to generate the channel contribution
can makes features more discriminative.

Fig. 5. The aggregation framework of our method.

4.5. Global image representation generating

The final step in the offline part is to generate the global
superior image representation. When we finish the exploring of
spatial contribution and channel contribution, we can use them

to aggregate local features into global image representation
vector F,F ∈ RNas follows:

F(n) = Φ(n) ⊙ C(n) (10)

where ⊙ denotes element-wise product between vectors. The
aggregation framework is shown in Fig. 5. As we can see, we
applied spatial contribution S ′ to each channel of the feature
maps X . Then we generate intermediate vectorΦ by using Sum-
pooling. Finally, we applied channel contribution C to Φ and get
the global image representation vector F.

4.6. Algorithm

Our algorithm aggregates the convolutional features into a
global superior image representation. The pseudo code is in Al-
gorithm 1. X is the 3-dimensional feature tensor extracted from
the selected convolutional layer. It consists of N feature maps
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with H height and W width (X ∈ R(N×H×W )). Let V ∈ RN

stores the corresponding channel ID according to the size of the
channel response from large to small. S′

∈ R(H×W ) denotes spatial
contribution matrix and C ∈ RN denotes channel contribution
vector.

5. The proposed method on online

In this section, we introduce the online part of the system
framework in detail. Query features extraction, spatial contribu-
tion exploring, channel contribution exploring and generate the
global representation vector of the query image are the same as
the offline part, so this section will not go into details. It should
be noted that the online part does not need to perform channel
response degree ranking. We directly use the results generated
by the offline part to perform spatial exploring. In Section 5.1,
we introduce query expansion and present similarity comparison
in Section 4.2.

5.1. Query expansion

We can improve performance through query expansion [37].
F(p) denotes the global representation vector of the image p. The
process is to input a query image to get the global representation
vectors of the top P images. Each vector is N-dimensional. We
sum the P N-dimensional vectors to get the vector Q ∈ RN , then
L2 normalize Q to get the re-query vector Q′

∈ RN . Finally, we
can use this re-query vector to retrieval again to get the final
results.

Q =

P∑
p=1

F(p) (11)

Q′
=

Q√∑
n Q

2
n

(12)

Although it is simple, we show that it can improve the perfor-
mance.

5.2. Similarity comparison

In content-based image retrieval, it is necessary to compare
the similarity between the query image and the data set. In this
paper, the final global image representation is a form of vector.
We compare the similarities by comparing the query global image
representation with the Euclidean distance of the database global
image representations.

6. Experiments

In order to demonstrate the effectiveness of our Strong-
Response-Stack-Contribution (SRSC) approach, we conduct ex-
periments on the four benchmark datasets. In our approach, we
set the parameter M = 15 and α = 0.2.Section 7.1 will discuss
the selection of the parameter M and discuss the parameter α

in Section 7.2. We set P = 3 and discuss this parameter in
Section 7.3. All the features are extracted from the pool5 layer
of the VGG16 [38] pre-trained in ImageNet without fine-tuning
using Caffe. So the biggest dimension of the global representation
vector is 512. We conduct PCA and whitening to reduce the
dimension to 128 and 256. In this process, we used the whiten-
ing parameters learned on Paris6K when testing on Oxford5K
(105K), and used the whitening parameters learned on Oxford5K
when testing on Paris6K (106K). We use the cropped queries in
Oxford5K (105K) and Paris6K (106K).

6.1. Performance evaluation

To make fair comparisons for state-of-the-art methods, we
employ the standard protocol with other methods. We use mean
average precision (mAP) to evaluate over all queries. It is the
mean of the average precision scores for each query.

mAP =

∑I
i=1 AP(i)

I
(13)

AP =

∑K
k=1(Pre (k) × r (k))

number of relevant images
(14)

Pre =
number of relevant images
number of retrieved images

(15)

where I represents the total number of queries, K represents the
number of retrieved images. r(k) is an indicator function equaling
1 if the item at rank k is a relevant image, zero otherwise. We
used the evaluation code provided on the public datasets to
evaluate performance.

6.2. Datasets

Our method was experimented on four public datasets. Ox-
ford5K [39] contains 11 different Oxford ‘‘landmarks’’ of im-
ages, each of them is retrieved from Flickr. The entire data
set consists of 5062 high resolution (1024 × 768) images. For
each landmark, the official provides 5 different queries to av-
erage the retrieval performance for any single query. Therefore,
the official provides a total of 55 query images, these images
are fixed, and the groundtruth of the 55 query images is offi-
cially provided. Paris6K [40] consists of 6412 images collected
from Flickr by searching for particular Paris landmarks. It gives
a set of 55 queries including 11 landmarks. Oxford105K and
Paris106K are the extension of Oxford5K [39] and Paris6K [40]
by adding additional 100K distracted images. The entire 100K
dataset consist of high resolution (1024 × 768) images. These
images were crawled from Flickr. Compared with the two small
datasets of Oxford5K and Paris6K, this dataset contains more
content and more noise. For example, the Oxford5K dataset is
obtained from Flickr using tags such as ‘‘Oxford Christ Church’’
and "Oxford Radcliffe Camera’’., while the 100K dataset contains
coarse-grained tags such as ‘‘Friend’’ and ‘‘Holiday’’. Therefore, the
two small datasets of Oxford5K and Paris6K are more limited and
more representative.
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Fig. 6. Top 10 retrieval results for query ‘‘all_souls_000013’’. (a) Wang. (b) PWA.
(c) R-MAC. (d) CroW. (e) SRSC.

Fig. 7. Top 10 retrieval results for query ‘‘ashmolean_000007’’. (a) Wang. (b)
PWA. (c) R-MAC. (d) CroW. (e) SRSC.

6.3. Comparison with the state-of-the-art

We compare our approach SRSC with CroW [5], NetVLAD [41],
PWA [6], Neural code [3], R-MAC [33] and Wang et al. [35]
in 3 different dimensions. Our main competitors are CroW [5],
PWA [6] and Wang et al. [35]. In addition to the SRSC experiments
compared with other methods, we also made experiments of
SRSC with Query Expansion. Table 1 shows the experimental
results of the state-of-the-art and our SRSC method using pre-
trained VGG16 models on four benchmark datasets. The main
competitors have been blackened in Table 1. As shown in table,
we compare them in different dimensions. On the Paris6k dataset,
when the final global image representation vectors are 128, 256
and 512 dimensions, the mAP of our method reaches 82.5%, 84.5%
and 85.9% respectively. And on the Oxford5k dataset, the mAP
of our method reaches 68.8%, 72.3% and 74.6% respectively. Our
method SRSC can achieve the best performance in the comparison
methods on the Oxford5K, Paris6K and Paris106K datasets. On the
Oxford105K, when the global image representation vector is 128
dimensions, the performance is just a little lower than Wang [35].
After doing simple query expansion, the performance of our ap-
proach has risen in each dimension. The best performance on the
two datasets (Paris6k and Oxford5K) is that mAP reaches 88.4%
and 79.6% respectively.

Figs. 6–8 show the top 10 results for 3 example queries
(‘‘all_souls_000013’’, ‘‘ashmolean_000007’’ and ‘‘cornmarket_
000131’’) for five methods (Wang [35], PWA [6], R-MAC [33],
CroW [5] and SRSC) respectively. Unrelated results we identify
with a red border. We used 512-dimensional final global image
representation without query expansion. From Figs. 6 and 7, we

Fig. 8. Top 10 retrieval results for query ‘‘cornmarket_000131’’. (a) Wang. (b)
PWA. (c) R-MAC. (d) CroW. (e) SRSC.

can see that SRSC has the best performance and no errors in
top 10. From Fig. 8, we can see that Wang [35] has the same
performance as SRSC in top 5. There are three errors in top 10,
but SRSC is relatively backward. In general, the performance of
SRSC is quite good.

6.4. Experiments on Oxford105K and Paris106K

Considering that Oxford105K and Paris106K are large data
sets, there are a lot of noise inside, so it is not suitable to select
the corresponding channel based only on the channel response
degree calculated over the entire dataset. We also calculated
the channel response intensity of each image, and selected the
intersection of top 30 and the top 30 of V = {v1, v2, . . . , vN} to
build the weight maps.

7. Discussion

In this section, we completely discuss the impact of different
parameters. We also clearly state what it can bring for improve-
ment, in terms of spatial contribution and channel contribution.
Finally, we discuss the time complexity, memory consumption
and the limitation of our method.

7.1. Discussion about the selection of the parameter M

When we generate spatial contribution, we choose the val-
ues of the top M strong response channels to build the weight
maps. Experimental performance is related to the choice of
M. In Section 4.2, we calculate each channel’s response on the
entire dataset and sort them from large to small. We believe that
the top M channels already contain almost all the information
when the top M channels’ responses occupies most of the total
responses of all channels on the entire dataset. For example,
on the Oxford5k and Paris6K datasets, we set the threshold to
0.7, that is, the total responses of the top M channels occupy a
ratio of 0.7 on the total responses of all channels. The M value
calculated under this condition is 10 and 14 respectively. And
we selected a series of values (M from 5 to 512) to conduct
experiments on Paris6K and Oxford5K datasets. The choice of
M and the final experimental result are shown in Fig. 9. As we
can see, the experimental performance is considerable when M’s
choice is 10 and 14 respectively on the Oxford5K and Paris6K.
And the experimental performance is also considerable when M is
between 10 and 25, then the experimental performance decreases
with the increase of the value of M. This also proves that the CroW
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Table 1
Performance comparison with the state-of-the-art and our SRSC method with the different dimensions on the four benchmark datasets.
Method Dim Oxford5K Paris6K Oxford105K Paris106K

NetVLAD [41]
Neural code [3]
CroW [5]
PWA [6]
Wang [35]
Our method (SRSC)

128
128
128
128
128
128

61.4
55.7
64.1
64.5
65.8
68.8

69.5
–
74.6
76.9
77.9
82.5

-
52.3
59.0
–

60.6

-
–
67.0
–
70.5
71.8

Neural code [3]
NetVLAD [41]
R-MAC [33]
CroW [5]
PWA [6]
Wang [35]
Our method (SRSC)

256
256
256
256
256
256
256

55.7
63.5
56.1
68.4
68.7
70.7
72.3

-
73.5
72.9
76.5
79.6
80.5
84.5

52.4
–
47.0
63.7
–
66.5
66.8

–
–
60.1
69.1
–
74.0
74.6

NetVLAD [41]
Neural code [3]
R-MAC [33]
CroW [5]
PWA [6]
Wang [35]
Our method (SRSC)

512
512
512
512
512
512
512

67.6
55.7
66.9
70.8
72.0
72.8
74.6

74.9
–
83.0
79.7
82.3
83.0
85.9

-
52.2
61.6
65.3
66.2
68.1
69.0

-
–
75.7
72.2
75.8
76.3
77.1

CroW+QE
CroW+QE
CroW+QE
PWA+QE
Wang+QE
Wang+QE
Wang+QE
SRSC+QE
SRSC+QE
SRSC+QE

128
256
512
512
128
256
512
128
256
512

67.0
71.8
74.9
74.8
68.3
73.8
77.0
74.3
77.0
79.6

79.3
81.5
84.8
86.0
82.3
85.1
87.4
85.0
87.2
88.4

64.1
67.6
70.6
72.6
68.4
73.4
74.2
68.4
73.5
74.8

72.8
75.3
79.4
80.7
70.6
78.2
80.9
74.8
79.4
81.6

Fig. 9. Performance with different values of M when tested on (a) Oxford5K
and (b) Paris6K.

Fig. 10. Performance with different values of α when tested on Paris6K and
Oxford5K.

method cannot achieve the best experimental performance by
adding all the channel values to construct spatial weights because
a lot of redundancy and noise are added. The performance (mAP)
of our method on Paris6K and Oxford5K datasets is higher than
that of CroW method by 6%∼8% and 4% respectively.

7.2. Discussion about the parameter α in Eq. (9)

α is a hyperparameter, which determines the contribution
of the sparsity information and the element-value information
to generate channel contribution. We set the value of α =

[0.1, 0.2, . . . , 0.9, 1.0]. We performed experiments on Oxford5K
and Paris6K respectively, and performed experiments on three
dimensions (128, 256, 512) on each dataset. The experimental
results are shown in Fig. 10. From the figure we can see that
when α is 0.2, the experimental performance is the best. This also
shows that the element-value information has a greater impact
on channel contribution.
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Fig. 11. Performance of four scenarios. (1) nSRSC (2) spatial (3) channel (4)
SRSC.

Table 2
Comparisons of performance under the different value of parameter p.

7.3. Discussion about the parameter P in query expansion

For the selection of P , it was done a set of experiments on
Oxford5K. We set P = [0, 1, 2, 3, 4, 5], and the results are shown
in Table 2. Experiments have shown that P = 3 can achieve the
best performance. As for the computational cost, it is almost the
same. Selecting the larger value or the smaller value, the program
running time differs by only 0.1–1 s, which is almost negligible
because it is just a simple addition of top P features.

7.4. Discussion about the spatial and channel contribution

To explore the impact of spatial contribution and channel con-
tribution on performance, we chose four scenarios to experiment:
(1) nSRSC, not use SRSC, just sum pooling, (2) spatial, spatial con-
tribution alone, (3) channel, channel contribution alone, and (4)
SRSC. The experimental results are shown in Fig. 11. From the fig-
ure we can see three points: (1) Using spatial contribution alone
can improve the experimental performance to some extent. (2)
Using channel contribution alone will reduce the performance. (3)
Combining the use of spatial contribution and channel contribu-
tion can optimize experimental performance. This result is in line
with our expectations because our approach is inspired by TF–
IDF, a numerical statistic that relates the Term Frequency to In-
verse Document Frequency. The spatial contribution is similar to
TF, and the channel contribution is similar to IDF. When we do not
multiply the TF and use IDF alone, it will be counterproductive.

7.5. Discussion about the time complexity

The time complexity of the algorithm is analyzed theoretically
and tested in practice.

Table 3
The running time of different stages.
Stage Time (s)

Features extraction (CPU) 48.03
Features extraction (GPU) 0.23
Channel response intensity calculation (CPU) 0.01
The global representation vector generation 0.02
Similarity comparison 1.03

The complexity of the offline part is mainly divided into three
parts: features extraction, channel response intensity calculation
and generation of the global representative vector. So the offline
time complexity is about J × ( O(

∑D
l=1 B

2
l × T 2

l × Ul−1 × Ul) +

O(N×W×H)+O(N×W×H)), Where D represents the number
of convolutional layers of the neural network, l represents the lth
convolutional layer of the neural network, Ul represents the num-
ber of output channels of the lth convolutional layer of the neural
network, B denotes the edge length of the output feature map,
and T represents the side length of each convolution kernel. The
extracted feature consists of N feature maps with H height and W
width. J represents the number of the dataset’s images. We can
see that the main time consumed in offline part is the extraction
of convolutional features. So the offline time complexity can be
described as J × (O(

∑D
l=1 B

2
l × T 2

l × Ul−1 × Ul)).
The complexity of online part can be divided into features

extraction of query, the global representation vector generation
and similarity comparison. So the online time complexity is about
O(
∑D

l=1 B
2
l × T 2

l × Ul−1 × Ul) + O(N × W × H) + O (N × J).
The main time consumed in online part is also the extraction
of convolutional features. So the online time complexity can be
described as O(

∑D
l=1 B

2
l × T 2

l × Ul−1 × Ul)
If other methods also use convolutional features for retrieval,

then the speed should not be too different, unless other methods
use accelerated retrieval.

We also actually tested the running time. The running time of
each stage is shown in Table 3. The test environment is Ubuntu
18.04, the deep learning framework is Caffe, the programming
language is python3.6. The CPU model is Intel Xeon X5687, and
the GPU model is GeForce GTX 1070. We use 55 query images
to test and use the average time of each stage. In the feature
extraction stage, when using CPU, it takes 48.03 s for each image,
and 0.23 s for GPU. The offline part also has channel response
intensity calculation. We calculated the channel response inten-
sity on the Oxford5K dataset, it takes 0.01 s to run on the CPU.
The global vector generation and similarity comparison are all
performed on the CPU, and the required time is 0.02 s and 1.03 s,
respectively.

7.6. Discussion about the memory consumption

In our method, we use VGG16 network to extract features,
our aggregation strategy determines that the longest dimension
of our global representation vector is 512. We can also use the
dimensionality reduction strategy to reduce the global vector to
256 or even 128 dimensions, and the performance is still consid-
erable. On Oxford5k, the memory required is the space to store
the 5062*512 matrix. Compared to the BoW method using the
SIFT features, the storage space is greatly reduced. Because BoW
needs to generate 1 million or more visual vocabularies, each
SIFT feature is 128-dimensional. On Oxford5k, it needs 5062*128
million space.

7.7. Discussion about the limitation

Our approach is unsupervised. We extract features using a pre-
trained model on ImageNet. This model is trained from more than
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1.28 million images and contains 1000 categories. We input an
image into this model to extract the convolutional features as the
deep features of the image, and then apply our proposed method
to the features to obtain the global representation vector. So the
limitation of our method is that if the image is very different from
the images content on ImageNet, such as medical images and
remote sensing images, the extracted features may not be able
to express the images effectively. For such images, the model can
be fine-tuned using the images of these types.

8. Conclusion

In this paper, we propose a method of aggregating convo-
lutional features into a global representation vector for image
retrieval. The key characteristic of our method is that we designed
spatial contribution and channel contribution to help us focus
on ROI. Spatial contribution can help us distinguish objects from
the background. Channel contribution can alleviate visual bursti-
ness [7]. It makes full use of both sparsity and element-value
information. Experiments on four benchmark datasets demon-
strate that our approach is better than the state-of-the-art ag-
gregation methods. Our method does not require thousands of
vector dimensions [6,42,43] to represent an image. The maximum
dimension depends on how many channels there are in the
features extraction layer of neural networks. The experimental
performance of reducing it to a lower dimension by dimension
reduction is also considerable. The simple global representation
vector also makes the memory burden less heavy.
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